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Abstract. Classic methods to overcome software faults include design diver-
sity that involves creating multiple versions of an application. However, design
diverse techniques typically require a staggering investment of time and man-
power. There is also no guarantee that the multiple versions are correct or equiv-
alent. This paper presents a novel approach that addresses the above problems,
by automatically producing multiple, semantically equivalent copies for a given
array/loop-based application. The copies, when used within the framework of
common design diverse techniques, provide a high degree of software fault toler-
ance at practically no additional cost. In this paper, we also apply our automated
version generation approach to detect the occurrence of soft errors during the
execution of an application.

1 Introduction

Design diversity is a technique used for achieving a certain degree of fault tolerance
in software engineering [1–5]. Since exact copies of a given program cannot always
improve fault tolerance, creating multiple, different copies is essential [6]. However, this
is not a trivial task as independently designing different versions of the same application
software can take a lot of time and resources, most of which is spent verifying that these
versions are indeed semantically equivalent and they exhibit certain diversity which
helps us catch design errors as much as possible (e.g., by minimizing the causes for
identical errors). The problem becomes more severe if a large number of versions are
required.

Automatically generating different versions of a given program can be useful in two
aspects, provided that the versions generated are sufficiently diverse for catching the
types of errors targeted. First, design time and cost can be dramatically reduced as a
result of automation. Second, since the versions are generated automatically, we can
be sure that they are semantically equivalent save for the errors of interest. However,
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as mentioned earlier, these versions should be sufficiently different from each other,
depending on the types of errors targeted.

Numerical applications which make extensive use of arrays and nested loops are
good candidates for automatic version generation as they are amenable to be analyzed
and restructured by optimizing compilers. Current compilers restructure such applica-
tions to optimize data locality and improving loop-level parallelism as well as for other
reasons [7–10]. The main stumbling block to full fledged re-ordering of computations
are data dependences in the program code.

The main contribution of this paper is a tool that generates different versions of a
numerical application automatically a priori. The tool generates these versions by re-
structuring the given application code in a systematic fashion using the concept of data
tiles. A data tile is a portion of an array which may be manipulated by the applica-
tion. Hence, an array can be thought of as a series of data tiles. Given such a series of
data tiles, of a particular size and shape, we can generate a new version of the code
by restructuring the code in such a fashion that the accesses to each tile are completed
before moving to the next tile. As a result, computations are performed on a per tile
basis. Therefore, a different tile shape or a different order of tiles (to the extent allowed
by data) gives an entirely different version of the application, thereby contributing to
diversity. In this paper, we also present a method for selecting the tile shapes as well as
method to systematically reorder them based on the number of versions required.

We apply our tool to the emergent architectural challenge of soft errors. Soft errors
are a form of transient errors that occur when charged neutrons strike logic devices
which hold charges to indicate the bit that they represent [11–14]. A neutron strike can
change the charge held on the device either by charging or discharging it. This change
in charge can lead to a bit flip in memory or logic components of the system which
can affect the end results generated by the application. We show how the tool can be
used to detect errors that remain undetected by a state of the art architectural recovery
approach.

The remainder of this paper is organized as follows. Section 2 presents the theory
behind the proposed approach. Section 3 presents implementation details of our tool as
well as results obtained using a scientific benchmark. Section 4 concludes the paper by
summarizing our major contributions and giving a brief outline of the planned future
work.

2 Detailed Analysis

This section explains the details of the approach proposed to automatically create the
multiple versions of a given array/loop based application. Our goal is to obtain different
(but semantically equivalent) versions of a given code fragment by restructuring the
fragment based on a data tile shape. The input to our approach is a code fragment that
consists of the series of loop nests and the data array(s) that is accessed in the fragment.
The loop nests in the fragment contain expressions, called array references, that access
locations within the array. Figure 1(a) shows an example code fragment and the array
being accessed in the loop nests.



Fig. 1. (a) A code fragment. (b) Data tiles formed from a seed tile. (c) Iteration set
that accesses the data in a data tile. (d) Co-tile identification. (e) Default order of
iteration sets. (f) New order of iteration sets, as a result of restructuring.

Our approach first creates a seed tile which is a uniquely shaped subsection of the
array (selection of a seed tile is detailed in Section 2.7). Using this seed tile as a tem-
plate, we logically divide the array into multiple sections called data tiles as shown in
Figure 1(b). In the following paragraphs we discuss what is performed on a particular
data tile.

In the next stage shown in 1(c), we identify for each loop nest the array references
that accesses locations within the data tile. Then, for each loop nest, we use these refer-
ences to determine the set of iterations that access this particular data tile. The iterations
from a loop nest that are associated with a particular data tile are called the iteration set
of that data tile with respect to that loop nest.

Now, let us consider the case for a particular iteration set associated with a data tile.
It is possible that these iterations access array locations outside the data tile as well.
These external locations are called the extra tile, and the original data tile and the extra
tile are collectively referred to as the co-tile. Figure 1(d) shows the co-tile corresponding
to an iteration set.

Our idea is to first identify, for each combination of data tile and loop nest, the as-
sociated iteration set. Once we have the iteration set corresponding to a data tile and
loop nest, we can execute all the computations that should take place on that pair. The
original code can therefore be thought of as the default order of iteration sets shown in
Figure 1(e). Next, in order to create new codes, we systematically re-order the iteration
sets to create multiple different sequences as shown in Figure 1(f). Each unique order of
iteration sets leads to a unique version of the code. Such a re-ordering is legal provided
that data dependences do not exist between iteration sets. Data dependences, impose an
ordering constraint on the iteration sets and prevent full fledged re-ordering. If depen-
dences do exist between the iteration sets, we explore other data tile shapes to arrive at
a dependence free group of iteration sets.

The rest of this section details our approach. After presenting basic definitions in
Section 2.1, Section 2.2 presents our method of forming data tiles. Section 2.3 shows
how iteration sets and co-tiles are calculated. Our algorithm to detect dependences (le-
gality requirements) are presented in Section 2.4. Section 2.5 shows how the iteration
sets are systematically re-ordered. Section 2.6 presents the overall algorithm used to cre-



ate multiple versions of code. Section 2.7 discusses how data tiles of different shapes
and sizes are created, and Section 2.8 explains how we deal with code that accesses
multiple arrays.

2.1 Basic Definitions

This subsection presents important definitions that we use to formalize our approach.
• Program : A program source code fragment is represented asP = {N ,A}, where
N is a list of loop nests and A is the set of arrays declared in P that are accessed in
N . Figure 2 shows the benchmark source code fragment employed.

• Array : An array Aa is described by its dimensions, δ, and the extent (size) in
each dimension, γ, Aa = {δ, γ}. For example, the array DW defined in the code
fragment in Figure 2 can be expressed asDW = {3, {10, 10, 4}} in our framework.

• Loop Nest : A loop nest Ni, is represented as {α,AN ,I,L,U ,S, ψ}, where α is
the number of loops in the nest and L, U , and S are vectors that give, respectively,
the values of the lower limit, upper limit, and the step of the loop index variables
which are given in I . It is assumed that at compile time all the values of these vec-
tors are known. The body of the loop nest is represented by ψ. The arrays accessed
within Ni are represented as ANi where ANi ⊆ A, i.e., each loop nest typically ac-
cesses a subset of the arrays declared in the program code. For example, the second
loop nest in Figure 2 can be represented as
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=
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• Loop Body : A loop body is made of a series of statements which use the references
to the arrays A declared in P . Consequently, loop body ψ can be expressed as a set
of references.

• Iteration : For a loop nest, Nn, an iteration is a particular combination of legal val-
ues that its index variables in I can assume. It is expressed as Iσ , and it represents
an execution of the loop body.

• Iteration Space : The iteration space of a loop nest Ni is the set of all iterations in
the loop nest.

• Data Space : The data space of a data structure (e.g., an array) are all the individual
memory locations that form the data structure in question.

• Reference : It is an element of ψ expressed as (ψr/wp = {Nn,AA, L,o}). It is an
affine relation from the iteration space of a loop nest Nn = {α,An,I,L,U ,S, ψ}
to the data space of an array (Aa = {δ, γ}). From compiler theory [7], it is known
that this relation can be described by Li + o where i is a vector that captures the
loop indices of N , L is a matrix of size δ ∗α, and o is an offset displacement vector.
As an example, the reference A[i+ j − 1][j + 2] is represented by

ψr/wp =

[

1 1
0 1

]

∗

[

i
j

]

+

[

−1
2

]

.

A reference within the body of a loop nest helps us calculate the locations of an
array that the loop nest accesses. Further, a reference can be a read reference, which



int DW[10][10][4];

for (N=1;N<=4;N++) {
for (J=2;J<=10;J++)
DW[1][J][N] = 0;

}

for (N=1;N<=4;N++) {
for (J=2;J<=10;J++)
for (I=2;I<=10;I++)
DW[I][J][N] = DW[I][J][N]

-R*(DW[I][J][N]
-DW[I-1][J][N]);

}

for (N=1;N<=4;N++) {
for (J=2;J<=10;J++)
DW[10][J][N] = T1*DW[10][J][N];

}

for (N=1;N<=4;N++) {
for(II=3; II<= 9; II++)
for (J=2;J<=10;J++)
DW[II][J][N] = DW[II][J][N]

-R*(DW[II][J][N]
-DW[II+1][J][N]);

}

Fig. 2. A code fragment with four
loop nests and an array.
.

Fig. 3. (a) Seed tile for the arrayDW in the
code fragment of Figure 2. (b) The array
DW divided into multiple tiles using the
seed tile.

means that an array location is read from, or a write reference, which means that
an array location is written to. This is identified by attaching a r/w superscript to
the reference. Hence, ψrp(Nn) represents the set of all array locations read by the
reference in loop nest Nn.

2.2 Data Tile Formation

In this paper, we use the concept of data space tiling to logically divide the data space
of an array into multiple sections. This subsection provides the theoretical basis and the
algorithm used to perform tiling.
• Data Tile : A data tile DAa,L,U is a regular subpart (region) of the array Aa. The

size of the data tile in each dimension is given by the difference between L and U

plus 1. It is assumed that the size of a data tile is not zero in any dimension. Based
on the definition of a data tile, data space of DAa,L,U can be formally expressed as
follows:

DAa,L,U = {{d1, d2..dδ} | L1 ≤ d1 ≤ U1

&& L2 ≤ d2 ≤ U2 ... && Lδ ≤ dδ ≤ Uδ}

• Seed Data Tile : A data tile, DAa,L,U , is described as a seed data tile if L = 0.
This tile is used (as a template) to partition the array Aa into further tiles. As an
example, Figure 3(a) shows a seed tile for the array DW that is defined in Figure
2, and Figure 3(b) illustrates how DW is partitioned into multiple tiles using this
seed tile. This partitioning is outlined in Algorithm 1. Multiple seed tiles can simply
formed by changing the values of the entries of U . By supplying different seed tiles
as input to Algorithm 1, we are able to split an array into differently shaped tiles.



Algorithm 1 DataT ile(DAa,L,U )

1: Tile list := ∅
2: for iδ = 1 to γδ by U [δ] do
3: L

′[δ] := iδ
4: U

′[δ] := min(iδ + U [δ] − 1, γδ)

5: for iδ−1 = 1 to γδ−1 by U [δ − 1] do
6: L

′[δ − 1] := iδ−1

7: U
′[δ − 1] := min(iδ−1 + U [δ − 1] − 1,

8: γδ−1)

9: .
10: .
11: for i1 = 1 to γ1 by U [1] do
12: L

′[1] := i1
13: U

′[1] := min(i1 + U [1] − 1, γ1)

14: Tile :=DAa,L′,U′

15: Tile list := Tile list
S

Tile
16: end for
17: end for
18: end for
19: Return Tile list

Fig. 4. The iteration set corresponding a
data tile in the array DW (accessed by
the code fragment in Figure 2) and the
second loop nest in the code fragment.

2.3 Iteration Set and Co-tile Formation

An iteration set is associated with a loop nest Nn, and a data tile DAa,L,U . It is the
subset of the iteration space of Nn, in which the elements (iterations) have the property
that ψr/wp (Iσ) ∈ DAa,L,U . That is, it is the set of all iterations in a particular loop
nest that accesses the locations in a given data tile. We can calculate the iteration set
I(DAa,L,U ,Nn) of data tile DAa,L,U and loop nest Nn as

I(DAa,L,U ,Nn) =
[

ψ
r/w
p ∈ψ

[

Iσ∈Nn

{ Iσ | {ψr/wp (Iσ) ∩DAa,L,U} 6= ∅ }. (1)

Figure 4 shows the iteration set corresponding to the data tile of the array DW
and the second loop nest in the code given in Figure 2. It is possible that the iteration
set I(DAa,L,U ,Nn) accesses locations in the array Aa that lie outside the data tile,
DAa,L,U . In other words, (

⋃

ψp
ψp(I(DAa,L,U ,Nn))) −DAa,L,U 6= ∅ may be true.

Recall that our overall goal is to capture all the computations that need to be per-
formed by a loop nest on a data tile. As a consequence, we need to express the extra
locations that are accessed by the iteration set. As mentioned earlier, the extra locations
and the original data tile together are called the co-tile of the iteration set and is given
by:

CDAa,L,U
,Ni

=
[

∀ψp∈Nn

ψp(I(DAa,L,U ,Nn)) (2)

Using the formulation for iteration set in Equation (1), the formulation for a co-tile
given in Equation (2) and the list of all data tiles generated by Algorithm 1, we can
now generate a list of all iteration set/co-tile pairs. The default list of pairs describes
the default program behavior (i.e., without any restructuring). It is this behavior that we
want to change while maintaining the same semantics as the original code.



Algorithm 2 DependenceDetector(Tile list)

1: Dep Array := 0
2: for allDm ∈ Tile list do
3: for all Ni ∈ N do
4: calculate IDm,Ni
5: end for
6: end for
7: for allDm ∈ Tile list do
8: for all Ni ∈ N do
9: for allDn ∈ Tile list do

10: for all Nj ∈ N do
11: if {(

S

ψwp
ψwp (IDm,Ni ))

T

(
S

ψr
p′
ψr
p′

(IDn,Nj ))} 6= ∅||

{(
S

ψrp
ψrp(IDm,Ni ))

T

(
S

ψw
p′
ψw
p′

(IDn,Nj ))} 6= ∅||

{(
S

ψwp
ψwp (IDm,Ni ))

T

(
S

ψw
p′
ψw
p′

(IDn,Nj ))} 6= ∅ then

12: Dep Arraym,i,n,j := 1
13: end if
14: end for
15: end for
16: end for
17: end for
18: Return Dep Array

2.4 Data Dependences Across Iteration Sets

All iterations in the given program fragment are executed in a default order called the
program order. This program order can be extended to the pairs of iteration sets and
co-tiles. In order to change the code, the execution of iteration sets must be re-ordered.
A fundamental restriction on whether we can re-order the iteration sets are ordering
relations among them, which are also known as data dependences.

The execution order of any two iterations can be arbitrary with respect to each other
as long as these two iterations do not have any data dependence between them. A data
dependence exists between two iterations within a loop nest if one iteration reads a value
of a variable computed by another iteration or if both iterations compute the value of
the same variable [7].

Consequently, in order to re-order any two iteration sets, there should not be any
data dependence there between them. Furthermore, if we want to arbitrarily re-order all
the iteration sets, there should not be any data dependence between any two iteration
sets. Otherwise, it is possible that the wrong data is read by one iteration set or written
by another iteration set. The rest of this sub-section presents our algorithm to detect
data dependences between iteration set and co-tile pairs. This analysis is different from
conventional data dependence analysis as we perform it at an iteration set and co-tile
granularity.

Formally, two iterations Iσ and I ′
σ within a nest Nn have a data dependence be-

tween them if and only if

ψ
r
p(Iσ) = ψ

w
p′ (I

′
σ)||ψwp (Iσ) = ψ

r
p′ (I

′
σ)||ψwp (Iσ) = ψ

w
p′ (I

′
σ) (3)



Fig. 5. Arrows indicate the data dependence between iteration sets formed by loop
nests in Figure 2 and data tiles formed using the seed tile in Figure 3(a).

is true, where ψr/wp and ψr/wp′ are two references that appear in Nn.
This formulation can be extended to iteration sets and the co-tiles that are accessed

in them. In the context of our paper, a dependence is said to exist between two iteration
sets if and only if,

{(
[

ψwp

ψ
w
p (I(DAa,L,U ,Nn)))

T

(
[

ψr
p′

ψ
r
p′ (I(DAa,L

′,U′ ,Nn′ )))} 6= ∅||

{(
[

ψrp

ψ
r
p(I(DAa,L,U ,Nn)))

T

(
[

ψw
p′

ψ
w
p′ (I(DAa,L

′,U′ ,Nn′ )))} 6= ∅||

{(
[

ψwp

ψ
w
p (I(DAa,L,U ,Nn)))

T

(
[

ψw
p′

ψ
w
p′ (I(DAa,L

′,U′ ,Nn′ )))} 6= ∅

(4)

is true.
Based on Equation (4), Algorithm 2 detects the data dependences between the iter-

ation sets formed from a list of data tiles. As we are not interested in re-ordering the
iterations within an iteration set, dependence detection is performed at the level of loop
nest granularity. The algorithm sets Dep Array[m, i, n, j] to 1 if a dependence exists
between the iteration set IDm,Ni and the iteration set IDn,Nj , where Dm and Dn are
data tiles created by Algorithm 1. For two iteration sets associated with the same loop
nest, the dependence flows from the iteration set that contains the earlier iterations to
the other iteration set. Let us now discuss what the matrix Dep Array represents. The
dependence relations between iteration sets can be described by a graph in which the
nodes are the individual iteration sets. A directed edge from the node that represents
iteration set IDm,Ni to the node that represents IDn,Nj means that IDn,Nj is dependent
on IDm,Ni . Consequently a node that represents an iteration set that is independent of
all other iteration sets has a fan-in value of zero in this graph. Given these observa-
tions, we can conclude that the matrix Dep Array is simply the representation of this



Position Code Version
1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 3 4 5 6 7 8 1
3 3 4 5 6 7 8 1 2
4 4 5 6 7 8 1 2 3
5 5 6 7 8 1 2 3 4
6 6 7 8 1 2 3 4 5
7 7 8 1 2 3 4 5 6
8 8 1 2 3 4 5 6 7

Fig. 6. The different orders of it-
eration sets in the different ver-
sions of the code

Algorithm 3 V ersionGenerator(Po, V )

1: Generate Seed Tile
2: Create Iteration Sets and Partitions
3: Verify dependences
4: while Dependences exist do
5: if Generate New Seed Tile() == failure then
6: Return Error
7: end if
8: Create Iteration Sets and Partitions
9: Verify dependences

10: end while
11: Create V Versions

graph in an adjacency matrix form. The dependence relations between iteration sets is
represented pictorially in Figure 5.

At this point, we have generated a list of iteration sets which when executed indi-
vidually perform all the computations that should be performed on a particular data tile
by the associated loop nest. However, it is possible that two iteration sets, IDn,Nj and
IDn′ ,Nj , which are associated with the same nest and have a dependence between them,
might intersect. That is, some iterations may belong to both IDn,Nj and IDn′ ,Nj . In or-
der to produce code that is semantically identical to the original code, the intersecting
iterations need to be associated with only one of the iteration sets. Assuming that the
iteration set IDn′ ,Nj is dependent on IDn,Nj , the intersecting iterations are executed by
IDn′ ,Nj . That is, IDn,Nj is set to IDn,Nj − (IDn,Nj ∩ IDn′ ,Nj ).

2.5 Re-ordering Iteration Sets

The key requirement for full re-ordering of iteration sets is that there should be no data
dependence at all between iteration sets. However, this behavior is not exhibited by most
real applications. Therefore, we relax this requirement and allow reordering when the
only dependences are between iteration sets corresponding to the same data tile. That
is, directed edges of the form, IDn,Ni to IDn,Nj which represents data dependences
between iteration sets associated with the same data tile are allowed. Once this condition
has been satisfied, we first group all the iteration sets associated with each tile. Then, we
partition the groups of iteration sets into V groups, where V is the number of versions
of code that are required and number each partition from 1 to V . We use this numbering
to create a circular sequence over all the iteration set partitions. That is, to create the
ith version of the code the order of iteration set partitions is : i, i + 1 ... V − 1, V , 1,
2....i− 2, i− 1. Figure 6 presents the orders of partitions when V is 8.

2.6 Generating Multiple Versions

This section describes Algorithm 3 to create the multiple versions of an input program.
The input to the algorithm is the original program Po and number of versions, V , of



the code that are desired. In order to create a semantically equivalent version of Po, a
new seed element (that has not been used previously) is formed. Then, using this seed
element, the data space of Po is broken up into further data tiles.

Using these data tiles and the loop nests in Po, the dependence graph between the
iteration sets that correspond to these data tiles is created. If there are no dependences
between iteration sets corresponding to different data tiles, then the different versions of
the code are created using orders as explained in Section 2.5. If however, dependences
do exist, a new seed tile is used. If no satisfactory seed tile can be found, an error
is reported. In order to generate the actual code, we rely on the Omega Library [15]
which is a polyhedral tool in which iteration spaces can be described using Presburger
arithmetic [16]. Given the description and order of the iteration tiles, the codegen utility
of the Omega Library is used to generate the actual loop nests. Once the loops have
been generated, they are combined so that the generated code is as compact as possible.
However, the combining is done such that the order between the iteration sets remains
the same. In fact, the combining method simply generates loops that iterate over the
partitions of iteration sets. A portion of the semantically equivalent version of the code
corresponding to one data tile is shown in Figure ??.

2.7 Data Tile Selection

So far we have ignored
int DW[10][10][4];

for (J=2;J<=5;J++)
DW[1][J][1] = 0;

for (J=2;J<=5;J++)
for (I=2;I<=10;I++)

DW[I][J][1] = DW[I][J][1] -R*(DW[I][J][1]
-DW[I-1][J][1]);

for (J=2;J<=5;J++)
DW[10][J][1] = T1*DW[10][J][1];

for(II=3; II<= 9; II++)
for (J=2;J<=5;J++)

DW[II][J][1] = DW[II][J][1] -R*(DW[II][J][1]
-DW[II+1][J][1]);

Fig. 7. The code generated for one data tile of the code
given in Figure 2.

the problem of generating
the actual seed tiles which
divide the array data space
into its component tiles.

The potential space to
explore in order to select ap-
propriate seed tiles is vast.
We first trim this space by
considering only those tiles
whose boundaries are par-
allel to the axes of the ar-
ray that is being tiled. The
rationale behind this is that
the output codes generated
using such tiles tend to be simpler that those generated using arbitrary tiles. That is,
if the array is δ-dimensional, the seed is shaped regularly, and the references from the
loop nest to the array are through affine expressions; then iteration sets that access the
data tiles are regular in shape.

Further, as we require V different versions, we assume that the size of the seed tile
should imply that there are V data tiles. This also implies that the iteration sets in an
iteration set partition are all associated with the same data tile.

Let us consider a δ-dimensional array, A[n1, n2, ..nδ] for which V unique seed
tiles are required. As A is δ-dimensional, any seed tile of A, S[s1, s2, ..sδ], is also δ-
dimensional. Therefore, the problem of finding the values of s1, s2, ..sδ which defines
the shape of the seed tile translates into the problem of selecting an appropriate value of



si from the factors of ni such that
∑

i si = V . As ni is bounded by the array size large,
the number of combinations from which S[s1, s2, ..sδ] is selected is not very large.

2.8 Handling Multiple Arrays

Our formulation so far has assumed that the references in the loop nests (of the code for
which we meant to generate multiple versions) access a single array. In order to extend
our approach to multiple arrays, we first need to extend the concept of an iteration set.
An iteration set is now associated with a loop nest as well as data tiles belonging to
different arrays. As a result, the iteration set is expressed as I{D},Nj , where {D} is
the set of data tiles (from different arrays) which are accessed in that iteration set. If
the loop nest associated with the iteration set does not contain references that access
an array {D} will not contain a data tile from that array. Consequently, dependences
between two iteration sets can potentially occur if they both access a common location
in any array used by the program.

Another consideration with multiple arrays is how the seed tile for each array is
created. One approach is to simply have the same seed tile for each array. Another
approach is to create different seed tiles for different arrays, where the shape of a seed
tile associated with one array is independent of the seed tile chosen for another array. In
yet another approach, a seed tile is created for a chosen array As with a fixed number
of elements. The ratio of the elements in a seed tile for an array As′ is fixed relative to
the number of elements in a seed tile used for As, and based on the number of elements
in this seed tile, the shape of the tiles is determined. Consequently, by changing the
number of elements in the seed tile used for As the seed tile used for As′ is changed. As
each approach potentially gives us different versions of code, the approach we choose
depends on the number of versions that need to be created. The default approach used
is the one in which each tile in each array is of the same shape.

3 Implementation and Experiments

While our automated approach can be useful in any scenario where multiple versions
of the same code are needed, we focus on one particular scenario in this work. This
section first describes the targeted scenario where our proposed approach is applied. It
then illustrates the architecture of the tool that is created based on the approach. Fi-
nally, it describes the experiments conducted using the tool in the targeted scenario. As
mentioned earlier, soft errors are a growing threat to the correct execution of an appli-
cation [11–13]. A soft error is defined as an unwanted change in the state of a bit in a
computer’s component such as the memory system. It can result from particle strikes
on logic devices which cause the bit represented by the device to flip. Increased scaling
of technology has exacerbated this problem [14]. As result, the problem of soft errors
has received considerable attention with many proposed hardware as well as software
solutions. In chip multiprocessor (CMP) architectures, redundant-threading (RT) is one
of the ways to overcome soft errors [17]. In an RT framework the same code is simul-
taneously executed across all the processors and periodically the results are compared
to check if the computed results across the different threads agree. If they agree, it is



Fig. 8. Details of the flow within the tool. Phase 1 involves the creation of data tiles
(Section 2.2) using a unique seed tile (Section 2.7). Phase 2 involves the parsing
of the input code fragment, formation of iteration sets (Section 2.3), and detection
of data dependences between them (Section 2.4). Phase 3 re-orders iteration sets
(Section 2.5). Finally, phase 4 generates the output code fragment using the Omega
Library (Section 2.6).

assumed that no error has occurred as only a single soft error is expected in any sin-
gle thread and in any time frame. Another way is to run the code multiple times one
after another and to check whether the results from each run agree with each other.
Obviously, running each version simultaneously, if the resources are available, is the
preferred option as it results in a faster finish time for the thread. The disadvantage is
that in a CMP that is based on the shared memory concept, threads that operate simulta-
neously in the RT framework would read the same data from memory in close temporal
proximity. Therefore, if a datum in memory is corrupted by a soft error, running the
same code multiple times in parallel could result in the corrupted value being read by
all threads. Such a read could result in the wrong result being computed and this error
would remain undetected in current techniques. Although error correcting codes (ECC)
have been proposed to overcome errors in the caches, ECC is not a viable solution
in all computing systems due to the high costs it involves, especially form the power
consumption angle [18, 19]. Furthermore, ECC would not catch multiple errors, which
would be detected by our method.

We propose to use our automatic versioning algorithm to create multiple versions of
the thread. These versions, when run in parallel, will access data in different temporal
orders. Thus, the proposed approach will achieve temporal diversity without increasing
the overall execution time. As a result, a particular datum which is corrupted at some
time during the execution of the threads, could be accessed before corruption by one
thread and after corruption by another. Therefore, it is possible that the changed value
of the datum will be observable in the results of the different threads. Obviously, if
the datum does not affect the end result, the proposed approach would perform exactly
like the RT case and declare that no soft error has occurred. However, if that datum
affects the end results, our approach is more likely to detect it. A tool was implemented
based on the data tile based code restructuring approach (see Figure 8). This tools uses



Fig. 9. The graph shows the number of errors in the array DW for different error
injection rates using the default RT scheme and the proposed approach.

the Omega Library to evaluate the relations described in Section 2 and to generate the
loops corresponding to the final relations using the Library’s codegen utility on each
relation one by one [20]. The tool was used to automatically create eight versions of the
tsf benchmark shown in Figure 2 using the seed tile shown in Figure 3(a). Each version
used a different order of iteration tiles shown in Figure 6. Therefore, each iteration set
will execute at a particular time slot in at least one version. In an error free scenario, the
different versions should generate the same results. However, in case of a soft error, two
versions may differ in the results generated for a particular iteration set. In that case,
the version that scheduled the iteration set earlier than the other is assumed to be the
correct one. That is, the error is assumed to have occurred between the executions of
the earlier set and set executed later.

We ran the original benchmark in conjunction with a fault injection module [21]
to simulate execution under the soft error scenario. This setup was used to record the
stage at which each error was injected and where in the memory space it occurred. Then,
each automatically generated version of the code was run under the error injection mode
using the previously recorded error occurrence and the results were compared with each
other. A simple arbiter is used to reason about the results that are generated. If the results
of any data tile in the automatically generated versions were different, the arbiter chose
the results of the version in which the iteration tile corresponding to the data tile is
executed earlier. In order to simulate RT, the errors recorded earlier are injected for
each version, one at a time. At each stage, any error that is not injected into the memory
is assumed to be caught, but any changes to the memory itself are allowed to propagate.
Figure 9 shows the number of remaining errors in the proposed approach as compared to
the standard RT approach (which uses the same version in each processor) for different
injection rates. It can be seen that the proposed approach reduces the number of errors
that affect the end result.

4 Concluding Remarks

This paper presents a tool that uses code restructuring techniques to automatically gen-
erate multiple semantically equivalent versions of a given numerical application that is



organized as a series of loops that access data in arrays. We created different versions
of the code that differ in the order in which they access the data and used these dif-
ferent versions of the code to detect the occurrence of soft errors during the execution
of the code. We believe that, this tool provides an inexpensive and automated method
to enable fault tolerance to critical applications. Our planned future work includes de-
veloping more techniques to generate seed tiles easily and developing techniques to
generate more compact code. We also plan to use our tool in other scenarios that benefit
from multiple versions.
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